transform¶
supreme.transform.chirpz(x, A, W, M) | Compute the chirp z-transform. |
supreme.transform.chirpz2(x, A_row, W_row, ...) | Perform the Chirp z-Transform on a 2D signal. |
supreme.transform.homography(image, matrix) | Perform a matrix transform on an image. |
supreme.transform.logpolar(image[, angles, ...]) | Perform the log polar transform on an image. |
supreme.transform.matrix(image, matrix[, ...]) | Perform a matrix transform on an image. |
chirpz¶
- supreme.transform.chirpz(x, A, W, M)¶
Compute the chirp z-transform.
The discrete z-transform,
X(z) = sum_{n=0}^{N-1} x_n z^{-n}
is calculated at M points,
z_k = AW^-k, k = 0,1,...,M-1
for A and W complex, which gives
X(z_k) = sum_{n=0}^{N-1} x_n z_k^{-n}
chirpz2¶
- supreme.transform.chirpz2(x, A_row, W_row, M_row, A_column, W_column, M_column)¶
Perform the Chirp z-Transform on a 2D signal.
x – 2 dimensional input signal A_row,W_row,M_row – A, W and M applied to rows A_column,W_column,M_column – A, W and M applied to columns
Returns the Chirp z-Transform of dimension (M_row,M_column).
See also: chirpz
homography¶
- supreme.transform.homography(image, matrix, output_shape=None, order=1, mode='constant', cval=0.0, _coords=None)¶
Perform a matrix transform on an image.
Each coordinate (x,y,1) is multiplied by matrix to find its new position. E.g., to rotate by theta degrees clockwise, the matrix should be
- [[cos(theta) -sin(theta) 0]
- [sin(theta) cos(theta) 0] [0 0 1]]
or to translate x by 10 and y by 20,
- [[1 0 10]
- [0 1 20] [0 0 1 ]].
logpolar¶
- supreme.transform.logpolar(image, angles=None, Rs=None, mode='M', cval=0, output=None, _coords_r=None, _coords_c=None, extra_info=False)¶
Perform the log polar transform on an image.
Returns: lpt : ndarray of uint8
Log polar transform of the input image.
angles : ndarray of float
Angles used. Only returned if extra_info is set to True.
log_base : int
Log base used. Only returned if extra_info is set to True.
References
[R24] Matungka, Zheng and Ewing, “Image Registration Using Adaptive Polar Transform”. IEEE Transactions on Image Processing, Vol. 18, No. 10, October 2009.
matrix¶
- supreme.transform.matrix(image, matrix, output_shape=None, order=1, mode='constant', cval=0.0, _coords=None)¶
Perform a matrix transform on an image.
Each coordinate (x,y,1) is multiplied by matrix to find its new position. E.g., to rotate by theta degrees clockwise, the matrix should be
- [[cos(theta) -sin(theta) 0]
- [sin(theta) cos(theta) 0] [0 0 1]]
or to translate x by 10 and y by 20,
- [[1 0 10]
- [0 1 20] [0 0 1 ]].