noise¶
supreme.noise.dwt_denoise(X[, wavelet, ...]) | Denoise an image using the Discrete Wavelet Transform. |
supreme.noise.variance |
dwt_denoise¶
- supreme.noise.dwt_denoise(X, wavelet='db8', levels=4, alpha=2)¶
Denoise an image using the Discrete Wavelet Transform.
Parameters: X : ndarray of uint8
Image to denoise.
wavelet : str
Wavlet family to use. See supreme.lib.pywt.wavelist() for a complete list.
levels : int
Number of levels to use in the decomposition.
alpha : float
Parameter used to tweak the Wiener estimator. A larger value of alpha results in a smoother output.
Returns: Y : ndarray of float64
Denoised image.
Notes
Implemented according to the overview of [R8] given in [R7].
References
[R7] (1, 2) J. Fridrich, “Digital Image Forensics,” IEEE Signal Processing Magazine, vol. 26, 2009, pp. 26-37. [R8] (1, 2) M. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, “Low-complexity image denoising based on statistical modeling of wavelet coefficients,” IEEE Signal Processing Letters, vol. 6, 1999, pp. 300-303.