io

Image

class supreme.io.Image

Bases: numpy.ndarray

Image data with tags.

Methods

all([axis, out]) Returns True if all elements evaluate to True.
any([axis, out]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(t) Copy of the array, cast to a specified type.
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip(a_min, a_max[, out]) Return an array whose values are limited to [a_min, a_max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype, offset) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset
max([axis, out]) Return the maximum along a given axis.
mean([axis, dtype, out]) Returns the average of the array elements along given axis.
min([axis, out]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
prod([axis, dtype, out]) Return the product of the array elements over the given axis
ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel() Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck, order]) Change shape and size of array in-place.
round([decimals, out]) Return an array rounded a to the given number of decimals.
searchsorted(v[, side]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze() Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct a Python string containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.
__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature
T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[ 1.,  2.],
       [ 3.,  4.]])
>>> x.T
array([[ 1.,  3.],
       [ 2.,  4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([ 1.,  2.,  3.,  4.])
>>> x.T
array([ 1.,  2.,  3.,  4.])
all(axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

numpy.all
equivalent function
any(axis=None, out=None)

Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

numpy.any
equivalent function
argmax(axis=None, out=None)

Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

numpy.argmax
equivalent function
argmin(axis=None, out=None)

Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

numpy.argmin
equivalent function
argsort(axis=-1, kind='quicksort', order=None)

Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

numpy.argsort
equivalent function
astype(t)

Copy of the array, cast to a specified type.

Parameters:

t : string or dtype

Typecode or data-type to which the array is cast.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. ,  2. ,  2.5])
>>> x.astype(int)
array([1, 2, 2])
base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True
byteswap(inplace)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place.

Parameters:

inplace: bool, optional :

If True, swap bytes in-place, default is False.

Returns:

out: ndarray :

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([  256,     1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
      dtype='|S3')
choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

numpy.choose
equivalent function
clip(a_min, a_max, out=None)

Return an array whose values are limited to [a_min, a_max].

Refer to numpy.clip for full documentation.

See also

numpy.clip
equivalent function
compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

numpy.compress
equivalent function
conj()

Complex-conjugate all elements.

Parameters:

None :

Returns:

conj : ndarray

A new array of the same size and shape as a each of whose elements are the complex-conjugates of the positionally respective elements of a.

Examples

>>> x = np.eye(2) + 1j * np.eye(2)
>>> x
array([[ 1.+1.j,  0.+0.j],
       [ 0.+0.j,  1.+1.j]])
>>> y = x.conj()
>>> y
array([[ 1.-1.j,  0.+0.j],
       [ 0.+0.j,  1.-1.j]])
conjugate()

Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

numpy.conjugate
equivalent function
copy(order='C')

Return a copy of the array.

Parameters:

order : {‘C’, ‘F’, ‘A’}, optional

By default, the result is stored in C-contiguous (row-major) order in memory. If order is F, the result has ‘Fortran’ (column-major) order. If order is ‘A’ (‘Any’), then the result has the same order as the input.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
       [0, 0, 0]])
>>> y
array([[1, 2, 3],
       [4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters:

None :

Returns:

c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes):

  • data: A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as self._array_interface_[‘data’][0].
  • shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the shape of the underlying array.
  • strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array.
  • data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).
  • shape_as(obj): Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.c_short).
  • strides_as(obj): Return the strides tuple as an array of some other c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
       [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

numpy.cumprod
equivalent function
cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

numpy.cumsum
equivalent function
data
Python buffer object pointing to the start of the array’s data.
diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals.

Refer to numpy.diagonal for full documentation.

See also

numpy.diagonal
equivalent function
dtype

Data-type of the array’s elements.

Parameters:None :
Returns:d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
       [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>
dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters:

file : str

A string naming the dump file.

dumps()

Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters:None :
exposure
Return exposure time based on EXIF tag.
fill(value)

Fill the array with a scalar value.

Parameters:

value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1.,  1.])
flags

Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

  • UPDATEIFCOPY can only be set False.
  • ALIGNED can only be set True if the data is truly aligned.
  • WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory exposes a writeable buffer interface or is a string.

Attributes

flat

A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object.

See also

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
       [2, 5],
       [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
       [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
       [3, 1, 3]])
flatten(order='C')

Return a copy of the array collapsed into one dimension.

Parameters:

order : {‘C’, ‘F’}, optional

Whether to flatten in C (row-major) or Fortran (column-major) order. The default is ‘C’.

Returns:

y : ndarray

A copy of the input array, flattened to one dimension.

See also

ravel
Return a flattened array.
flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
getfield(dtype, offset)

Returns a field of the given array as a certain type.

A field is a view of the array data with each itemsize determined by the given type and the offset into the current array, i.e. from offset * dtype.itemsize to (offset+1) * dtype.itemsize.

Parameters:

dtype : str

String denoting the data type of the field.

offset : int

Number of dtype.itemsize‘s to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x
array([[ 1.+1.j,  0.+0.j],
       [ 0.+0.j,  1.+1.j]])
>>> x.dtype
dtype('complex128')
>>> x.getfield('complex64', 0) # Note how this != x
array([[ 0.+1.875j,  0.+0.j   ],
       [ 0.+0.j   ,  0.+1.875j]], dtype=complex64)
>>> x.getfield('complex64',1) # Note how different this is than x
array([[ 0. +5.87173204e-39j,  0. +0.00000000e+00j],
       [ 0. +0.00000000e+00j,  0. +5.87173204e-39j]], dtype=complex64)
>>> x.getfield('complex128', 0) # == x
array([[ 1.+1.j,  0.+0.j],
       [ 0.+0.j,  1.+1.j]])

If the argument dtype is the same as x.dtype, then offset != 0 raises a ValueError:

>>> x.getfield('complex128', 1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: Need 0 <= offset <= 0 for requested type but received offset = 1
>>> x.getfield('float64', 0)
array([[ 1.,  0.],
       [ 0.,  1.]])
>>> x.getfield('float64', 1)
array([[  1.77658241e-307,   0.00000000e+000],
       [  0.00000000e+000,   1.77658241e-307]])
imag

The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0.        ,  0.70710678])
>>> x.imag.dtype
dtype('float64')
item(*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters:

*args : Arguments (variable number and type)

  • none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned.
  • int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.
  • tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.
Returns:

z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
       [2, 8, 3],
       [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
itemset()
itemsize

Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16
max(axis=None, out=None)

Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

numpy.amax
equivalent function
mean(axis=None, dtype=None, out=None)

Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

numpy.mean
equivalent function
min(axis=None, out=None)

Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

numpy.amin
equivalent function
nbytes

Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480
ndim

Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3
newbyteorder(new_order='S')

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters:

new_order : string, optional

Byte order to force; a value from the byte order specifications above. new_order codes can be any of:

* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns:

new_arr : array

New array object with the dtype reflecting given change to the byte order.

nonzero()

Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

numpy.nonzero
equivalent function
prod(axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

numpy.prod
equivalent function
ptp(axis=None, out=None)

Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

numpy.ptp
equivalent function
put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

numpy.put
equivalent function
ravel([order])

Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

numpy.ravel
equivalent function
ndarray.flat
a flat iterator on the array.
real

The real part of the array.

See also

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1.        ,  0.70710678])
>>> x.real.dtype
dtype('float64')
repeat(repeats, axis=None)

Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

numpy.repeat
equivalent function
reshape(shape, order='C')

Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

numpy.reshape
equivalent function
resize(new_shape, refcheck=True, order=False)

Change shape and size of array in-place.

Parameters:

new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

order : bool, do not use.

A SystemError is raised when this parameter is specified.

Returns:

None :

Raises:

ValueError :

If a does not own its own data or references or views to it exist, and the data memory must be changed.

SystemError :

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]])
>>> print a.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> a.resize((2, 1))
>>> a
array([[0],
       [1]])
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> print a.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> a.resize((2, 1))
>>> a
array([[0],
       [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
       [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
round(decimals=0, out=None)

Return an array rounded a to the given number of decimals.

Refer to numpy.around for full documentation.

See also

numpy.around
equivalent function
searchsorted(v, side='left')

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

numpy.searchsorted
equivalent function
setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

Parameters:

val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns:

None :

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
       [3, 3, 3],
       [3, 3, 3]])
>>> x
array([[  1.00000000e+000,   1.48219694e-323,   1.48219694e-323],
       [  1.48219694e-323,   1.00000000e+000,   1.48219694e-323],
       [  1.48219694e-323,   1.48219694e-323,   1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters:

write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],
       [2, 0, 0],
       [8, 5, 9]])
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : False
  ALIGNED : False
  UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True
shape

Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
size

Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30
sort(axis=-1, kind='quicksort', order=None)

Sort an array, in-place.

Parameters:

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. Not all fields need be specified.

See also

numpy.sort
Return a sorted copy of an array.
argsort
Indirect sort.
lexsort
Indirect stable sort on multiple keys.
searchsorted
Find elements in sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
       [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
       [1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
      dtype=[('x', '|S1'), ('y', '<i4')])
squeeze()

Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

numpy.squeeze
equivalent function
std(axis=None, dtype=None, out=None, ddof=0)

Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

numpy.std
equivalent function
strides

Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
              [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813
sum(axis=None, dtype=None, out=None)

Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

numpy.sum
equivalent function
swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

numpy.swapaxes
equivalent function
take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

numpy.take
equivalent function
tofile(fid, sep="", format="%s")

Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile().

Parameters:

fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written, equivalent to file.write(a.tostring()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

tolist()

Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible Python type.

Parameters:

none :

Returns:

y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]
tostring(order='C')

Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters:

order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

Returns:

s : str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tostring()
'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tostring('C') == x.tostring()
True
>>> x.tostring('F')
'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

numpy.trace
equivalent function
transpose(*axes)

Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters:

axes : None, tuple of ints, or n ints

  • None or no argument: reverses the order of the axes.
  • tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th axis.
  • n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form)
Returns:

out : ndarray

View of a, with axes suitably permuted.

See also

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a.transpose()
array([[1, 3],
       [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
       [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
       [2, 4]])
var(axis=None, dtype=None, out=None, ddof=0)

Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

numpy.var
equivalent function
view(dtype=None, type=None)

New view of array with the same data.

Parameters:

dtype : data-type

Data-type descriptor of the returned view, e.g. float32 or int16.

type : python type

Type of the returned view, e.g. ndarray or matrix.

Notes

a.view() is used two different ways.

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different dtype. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass), or a.view(type=ndarray_subclass), just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.). This does not cause a reinterpretation of the memory.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
       [3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2.,  3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

ImageCollection

class supreme.io.ImageCollection(file_pattern, conserve_memory=True, grey=False)

Bases: object

Load and manage a collection of images.

__init__(file_pattern, conserve_memory=True, grey=False)

Load image files.

Note that files are always stored in alphabetical order.

supreme.io.imread(name[, flatten]) Read an image file from a filename.
supreme.io.imsave(name, arr) Save an array to an image file.
supreme.io.load_vgg(path) Load a VGG super-resolution data-set.

imread

supreme.io.imread(name, flatten=0)

Read an image file from a filename.

Optional arguments:

  • flatten (0): if true, the image is flattened by calling convert(‘F’) on

the resulting image object. This flattens the color layers into a single grayscale layer.

imsave

supreme.io.imsave(name, arr)
Save an array to an image file.

load_vgg

supreme.io.load_vgg(path)

Load a VGG super-resolution data-set.

Parameters:

path : str

Path to the data-set.

Returns:

ic : ImageCollection

An imagecollection of all the images, with the homographies stored in x.info['H'] for each x in ic.

Notes

A VGG data-set stores the transformations from one frame to the next. This loader modifies all the homographies to be relative to the first frame.

References

[R2]Super-resolution test sequences by David Capel, VGG, University of Oxford. http://www.robots.ox.ac.uk/~vgg/data/data-various.html